

Copyright © 2018, BMO Financial Group Finance Research and Trading Lab (Finance Lab), Rotman School of Management.
No part of this publication may be reproduced, stored in a retrieval system, used in a spreadsheet, or transmitted in any form
or by any means – electronic, mechanical, photocopying, recording or otherwise – without the permission of Finance Lab,
Rotman School of Management.

Python Quick Start Guide

Build 1.00

Python Quick Start Guide

Table of Contents

Python/Environment Setup ... 2

Text Editor ...2

Python Distribution ..2

Verifying Your Installation ..2

Python Virtual Environments ..4

Introduction to Python .. 6

Create a Work Directory ...6

Hello World ..6

Hello Input ...7

Mathematical Expressions .. 10

Tuples, Lists, and Dictionaries ... 10

Summary ... 11

Using Pandas/NumPy Package – Stock Returns Example .. 12

Running the Python Interpreter .. 12

Importing Packages .. 12

Reading In Data From CSV .. 13

DataFrames .. 14

Viewing Data From DataFrames .. 14

Manipulating Data In DataFrames... 16

Summary ... 19

Copyright © 2018, Rotman School of Management. 2

Python/Environment Setup

Note: this tutorial is for individual users working with Python on their own computers. For mass

Python deployment, please contact your local IT administration. Python is installed on all the Finance

Lab workstations.

Text Editor

A text editor like Notepad, Notepad++, Notepad2, Atom, etc. is required to write and save the Python

code presented in the tutorial into .py files. Notepad is already available on all versions of Windows.

The recommended Anaconda/Miniconda installers (next section) include the option to install

VSCode, another text editor from Microsoft.

Python Distribution

The recommended way to set up your Python environment/workspace is to use either the Anaconda

distribution or the Miniconda distribution of Python 3.6+

Anaconda already includes many of the most commonly used data science packages (essentially

additional tools) like NumPy (support for multidimensional arrays) and Pandas (easy to use data

structures and tools for data analysis), as well as a package and virtual environment manager.

Miniconda only contains the package and virtual environment manager, and users can manually

decide on which packages to download and install for use.

Note: when installing Anaconda or Miniconda, choose to leave the option 'Add Anaconda to my PATH

variable' unchecked, and the option 'Register Anaconda as my default Python 3.x' checked

Verifying Your Installation

After installing Anaconda or Miniconda, please open the 'Anaconda Prompt' from the Start Menu, or

the Command Prompt/PowerShell if you are using a different Python distribution.

This should open a window looking similar to the following, with 'jregc' being replaced by your user

ID. This tutorial will refer to this window as 'the prompt' from here onwards.

https://notepad-plus-plus.org/
http://www.flos-freeware.ch/notepad2.html
https://atom.io/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://conda.io/miniconda.html
https://github.com/jregchiu/frtl-python/blob/master/guides/photos/start_menu_prompt.png
https://github.com/jregchiu/frtl-python/blob/master/guides/photos/start_menu_prompt.png
https://github.com/jregchiu/frtl-python/blob/master/guides/photos/start_menu_prompt.png

Copyright © 2018, Rotman School of Management. 3

Type python --version into the prompt and press enter. This command asks Python for its

current version number. The output should look similar to the following if everything has been

installed correctly, where the version number is 3.6 or greater.

Then type conda --version into the prompt and press enter. This command asks

Anaconda/Miniconda for its current version number. The output should look similar to the following

if everything has been installed correctly, where the version number is 4.5 or greater. In the case

where the version number is lower than 4.5, type conda update -n base conda to get the latest version.

Copyright © 2018, Rotman School of Management. 4

Python Virtual Environments

Anaconda and Miniconda come with the conda package and virtual environment manager. Different

Python applications that users write may require different files and packages, and virtual

environments help solve this problem. A virtual environment is a self-contained

environment/directory that contains its own files, installed packages, and their dependencies that

will not interact with other environments' files, packages, and dependencies.

When a user initially starts the prompt, it starts in the 'base' environment, as indicated on the left

side of the prompt.

However, it is not recommended to install additional packages in the 'base' environment. To create a

new environment, enter conda create --name <ENV NAME> pandas numpy matplotlib

requests. This will create a new virtual environment, with the name supplied in <ENV NAME>, and

with the 'pandas', 'numpy', ‘matplotlib’, and 'requests' packages needed in this tutorial, plus any

dependencies for those packages.

Copyright © 2018, Rotman School of Management. 5

In this case, the virtual environment is named 'rotman-tutorial'. Enter y into the prompt

after conda lists the packages that must be downloaded and installed to proceed and create the

environment. After the environment is created, enter conda activate <ENV NAME> or

simply activate <ENV NAME> into the prompt to switch the context of the prompt to that

environment.

As shown in the above screenshot, after entering conda activate rotman-tutorial into the

prompt, the prompt indicates that the current environment is 'rotman-tutorial'. If a user wants to

deactivate the current environment and go back to the ‘base’ environment, enter conda

deactivate.

Copyright © 2018, Rotman School of Management. 6

Introduction to Python

Create a Work Directory

In the local user directory, create a work directory to store the tutorial files. Users can do this from

the prompt by entering mkdir <WORK DIR NAME> to create a directory in the current location. Then,

enter cd <PATH TO WORK DIR> to change locations to that directory.

In the above screenshot, a directory called 'rotman-tutorial' was created in the

directory C:\Users\jregc

Hello World

Open your preferred text editor, type the following into a new file, and save the file in the work

directory as hello_world.py.

def main():

 print('Hello world!')

this if-block tells Python to call the main() method when it runs the file

from the prompt

if __name__ == '__main__':

 main()

Then in the prompt, enter python hello_world.py.

Copyright © 2018, Rotman School of Management. 7

This command tells Python to run the file in the local directory called hello_world.py. Inside that

file, there is a method called main that calls the print method. The print method takes in the text

'Hello world' as a parameter and prints it out to the prompt as Hello world!.

In case the prompt window size needs to be changed, right-click on the top module bar from the

prompt window, choose “Properties”, click on “Layout”, and change “Width” under “Window Size” to

display any contents properly.

Hello Input

Python can also take in user input. For example, try saving the following into a file called

hello_world2.py and running it:

def main():

 name = input('Please enter your name: ')

 print('Hello', name)

 print('Goodbye' + name + '!')

if __name__ == '__main__':

 main()

Copyright © 2018, Rotman School of Management. 8

This time, a prompt should be displayed, asking for your name. In effect, the first line of code tells

Python to print to the prompt the text Please enter your name:, wait for an input to be typed in,

and then save that input into the variable called name. The second line then tells Python to

print Hello and the value saved in the variable name. The third line shows another way of

combining text together to be printed out.

But if you look at what's displayed on the third line of the output, it looks a little messy. Let's fix that:

def main():

 name = input('Please enter your name: ')

 print('Hello', name)

 print('Goodbye ' + name + '!')

if __name__ == '__main__':

 main()

Note the space in the quoted text 'Goodbye '.

Copyright © 2018, Rotman School of Management. 9

There, that's better!

Copyright © 2018, Rotman School of Management. 10

Mathematical Expressions

Like many programming languages, Python can also perform mathematical calculations. Try saving

and running the following as math.py:

def main():

 print('8 plus 2 equals:', 8 + 2)

 print('9 minus 12 equals:', 9 - 12)

 print('5 times 3 equals:', 5 * 3)

 print('10 divided by 3 equals:', 10 / 3)

 print('10 divided by 2 equals:', 10 / 2)

 print('10 divided by 3 and rounded to an integer equals:', 10 // 3)

 print('10 divided by 2 and rounded to an integer equals:', 10 // 2)

 print('2 raised to the 7th power equals:', 2 ** 7)

if __name__ == '__main__':

 main()

Note that there is a difference between integer and floating-point math, where floating-point

numbers are representations of real numbers including decimals.

Tuples, Lists, and Dictionaries

There are also three common data structures that are used in Python: tuples, lists, and dictionaries.

Tuples are comma-separated lists of values that cannot be changed once created, while lists are

comma-separated lists of values that can be changed. Dictionaries are lists of key/value pairs that are

associated with one another. In effect, the major difference is how to access values in the different

data structures: usually one will index by number to access values in tuples and lists, while one will

index by key to access a value in a dictionary. The following example illustrates how this works.

Copyright © 2018, Rotman School of Management. 11

def main():

 t = (3, 5, 10, 9)

 l = [8, 9, 5]

 d = {'key': 'value', 'name': 'Bob'}

 print('The first element in the tuple is', t[0])

 print('The second element in the tuple is', t[1])

 print('The third element in the list is', l[2])

 print('The "name" element in the dictionary is', d['name'])

if __name__ == '__main__':

 main()

Note that python uses 0-based indexing, such that the first element is at position 0, the second is at

position 1, etc.

Summary

This concludes a basic introduction to Python, necessary for the following sections on using

Pandas/NumPy for simple stock return calculations. You should now be able to write a simple set of

instructions (a method) in Python, using a pre-defined method (print) and execute it from the

prompt.

For a more detailed introduction to Python, please see The Python Tutorial.

https://docs.python.org/3/tutorial/

Copyright © 2018, Rotman School of Management. 12

Using Pandas/NumPy Package – Stock Returns Example

Pandas is a commonly used open-source data analysis package for Python. It provides a

comprehensive set of easy-to-use data structures and analysis tools. We'll take a quick look at how

to use Pandas to read in CSV data from Yahoo Finance and perform some common calculations like

returns and summary statistics.

Instead of writing the code into a file and then running it via python <FILE NAME>.py, we'll use the

interactive Python interpreter available via the prompt. Note however that the code can also be saved

into a .py file and run, as demonstrated in the Introduction to Python section.

Running the Python Interpreter

To run the Python interpreter, simply enter python into the prompt, first ensuring that the 'rotman-

tutorial' (or other) virtual environment is active and the prompt is in your working directory.

As the screenshot shows, the Python interpreter is active, running Python version 3.6.5.

The >>> shows that we are in interactive mode, and can enter commands to be interpreted by

Python.

To exit the Python interpreter, enter the command exit().

Importing Packages

To import packages, either into a Python file or into the interpreter, type the following lines:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

Copyright © 2018, Rotman School of Management. 13

These three lines import the 'pandas', 'numpy', and 'matplotlib.pyplot' packages that we installed in

the 'rotman-tutorial' virtual environment which was set up in the Python Virtual

Environments section of the tutorial. Additionally, we create nicknames to reference them by ('pd',

'np', and 'plt' respectively). The next section will show how to call methods from these packages.

Reading In Data From CSV

Let's get some data in the form of a CSV file to read. Go to Yahoo Finance, query an equity ticker, and

download a 1Y span of historical daily data. Save this CSV in your work directory, as set up in

the Create A Work Directory section.

In this tutorial, we're using Netflix (NFLX) historical data.

df = pd.read_csv('NFLX.csv')

This command calls the read_csv() method available in the 'pandas' package, passing in the filename

'NFLX.csv' as the parameter specifying the file to open and read in the same directory. Relative paths

https://ca.finance.yahoo.com/

Copyright © 2018, Rotman School of Management. 14

are also possible, for example pd.read_csv('data/NFLX.csv') would read a 'NFLX.csv' file

located in a subdirectory named 'data'.

After reading the data in from the CSV file, the read_csv() method returns it as a DataFrame object,

and the variable named df (for DataFrame) refers to that DataFrame object.

DataFrames

DataFrames are the primary data structure in Pandas, and can be thought of as two dimensional

tables with labeled axes, similar to how data is laid out in a .csv or .xls/.xslx file in rows and

columns.

Viewing Data From DataFrames

df.dtypes

The dtypes attribute provides a list of the data types of each column.

df.head()

Copyright © 2018, Rotman School of Management. 15

The head() method display the first 5 rows in the DataFrame. A different number of rows to display

can be passed in as a parameter (for example df.head(10) would display the first 10 rows).

df.tail()

The tail() method displays the last 5 rows in the DataFrame. A different number of rows to display

can be passed in as a parameter (for example df.tail(20) would display the last 20 rows).

df.describe()

The describe() method calculates and displays some common sample statistics for the DataFrame's

columns, including the count, mean, standard deviation, min/max values, and quartiles. It skips NA

values.

df['Adj Close']

Copyright © 2018, Rotman School of Management. 16

Display a column from the DataFrame, selected by label.

Manipulating Data In DataFrames

It's also possible to add new columns to a DataFrame and perform other calculations:

df['Daily Return'] = df['Adj Close'].pct_change()

df['10DMA'] = df['Adj Close'].rolling(window=10, center=False).mean()

df['30DMA'] = df['Adj Close'].rolling(window=30, center=False).mean()

summary = df.describe()

From the commands above, three additional columns (‘Daily Return’, ‘10DMA’, and ‘30DMA’) are

added to the DataFrame. The ‘Daily Return’ column is calculated by calling the pct_change() method,

which calculates the percentage change between each row in the ‘Adj Close’ column. The ‘10DMA’

and ‘30DMA’ columns are calculated by creating rolling 10-day or 30-day windows on the rows in

the ‘Adj Close’ column, and then calculating the mean on those windows.

Then the ‘summary’ variable is defined as ‘df.describe()’. As demonstrated in the previous section,

this method will display some common sample statistics whenever a user types ‘summary’ and hits

enter in the prompt.

Using the daily return values, a user can also calculate an annualized volatility. From the command

below, a standard deviation of the daily returns is first calculated and multiplied by the square root

of the number of trading days in a year.

annual_vol = df['Daily Return'].std() * np.sqrt(df['Adj Close'].count())

A user can simply type in ‘annual_vol’ and hit enter in the prompt to query the calculated annualized

volatility.

Copyright © 2018, Rotman School of Management. 17

The to_csv() method allows a user to export the DataFrame to a csv file. Using the following sample
commands, a user can export the entire DataFrame as a csv file with a file name ‘NFLX_calculated.csv’
or just the summary part with a file name ‘NFLX_summary.csv’. The exported files will be made
available in the same directory.

df.to_csv('NFLX_calculated.csv')

df.describe().to_csv('NFLX_summary.csv')

Copyright © 2018, Rotman School of Management. 18

NFLX_calculated.csv

NFLX_summary.csv

Copyright © 2018, Rotman School of Management. 19

Summary

This concludes a basic introduction to the use of the Pandas package for data analysis, similar to the

basic data analysis and manipulations one would perform in Microsoft Office Excel. For more

information about other methods to view and manipulate data in Pandas, please refer to the current

documentation.

https://pandas.pydata.org/pandas-docs/stable/index.html
https://pandas.pydata.org/pandas-docs/stable/index.html

