
Copyright © 2019, Rotman School of Management. 1

RIT Tutorial – Speed Bump

Build 1.00

Python Algorithm Tutorial for Speed Bump

Table of Contents
Introduction ... 2

Implementation ... 3

Basic setup ... 3

Speed bump ... 5

Running the Algorithm ... 8

Copyright © 2019, Rotman School of Management. 2

Speed Bump
Introduction
When writing an algorithm for RIT using a programming language, students often encounter an issue
related to ‘speed’. This is mainly caused by the discrepancy between how long it takes for the
programming language to cycle through the algorithm codes, and how ‘often’ the RIT market
information is updated through API. Most of the time, as mentioned briefly in other tutorial
documents, students can simply use a ‘time-delay’ (i.e. ‘sleep’) function to resolve this issue. In other
words, this ‘sleep’ function is implemented so that it makes the programming language to pause at a
certain point when cycling through the algorithm codes in order to ensure that the execution is done
and completed properly, before moving onto the next algorithm codes.

This ‘sleep’ function effectively works as a ‘speed bump’ for an algorithm especially for a successful
order execution. While students can simply try using a ‘fixed’ value for the speed bump (i.e. try using
0.1, 0.2, or 0.5 seconds), this tutorial is designed for those who would like to improve their speed
bump logic in order to create a speed bump that adjusts dynamically through the case depending on
the execution time of orders (“endogenous speed bump”) and other case variables for an optimal
outcome. However, please also note that this tutorial document only provides an example of how one
may approach and resolve this issue. In other words, students should not take this tutorial as a
‘solution’ since there are many ways of dealing with this time discrepancy which is also often
different on case-by-case basis.

Students are expected to have followed the RIT REST API User Guide to set up the necessary Python
environment and completed a python algorithm.

Overview
Let’s start with a simple example to purchase 20,000 shares when the ‘rate limit’ is set to 5 and the
maximum volume per order is set to 1,000 shares. The ‘rate limit’ is the maximum number of orders
one is allowed to submit per second. The ‘rate limit’ may have been provided to you already, or you
may ‘observe’ the ‘rate limit’ value by submitting a large numbers of orders (and cancelling them
immediately) in order to push the REST API limit which triggers the ‘rate limit’ message which will
also be demonstrated below.

In order to not exceed the ‘rate limit’, we will implement a speed bump in order to ‘slow down’ the
execution of our algorithm. Instead of assigning a single value to the speed bump, we would like to
create an endogenous speed bump which is a speed bump that changes dynamically throughout the
case depending on the order execution time as well as other case variables.

Each time we submit an order we will first calculate the ‘transaction time’. The ‘transaction time’ is
how long it takes an order to get submitted successfully to the market. We then calculate our speed
bump by determining how long of a speed bump is needed between each order for us to submit the
maximum orders per second given our ‘transaction time’.

Copyright © 2019, Rotman School of Management. 3

In order to calculate our speed bump, let’s create a simple formula to represent this scenario in which
we are allowed to submit 5 orders every second.

1 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = (𝑡𝑡 + 𝑠𝑠𝑠𝑠) + (𝑡𝑡 + 𝑠𝑠𝑠𝑠) + (𝑡𝑡 + 𝑠𝑠𝑠𝑠) + (𝑡𝑡 + 𝑠𝑠𝑠𝑠) + (𝑡𝑡 + 𝑠𝑠𝑠𝑠)

Where,

𝑡𝑡 is the transaction time of a single order, and
𝑠𝑠𝑠𝑠 is our speed bump time per order

Once we re-arrange the formula and simplify it for sb, we get the following:

1/5 = 𝑡𝑡 + 𝑠𝑠𝑠𝑠, or
𝑠𝑠𝑠𝑠 = −𝑡𝑡 + 1/5

This means that the addition of transaction time and speed bump (time) of a single order should be
0.2 second given that we are only allowed to submit 5 orders per second in this case. This also means
that, once we ‘measure’ the transaction time, we can calculate the speed bump value.

Once we calculate the speed bump value, instead of using it directly to delay our algorithm, we will
calculate the ‘average’ speed bump using a total value of speed bump and a total number of orders
submitted. Then, we will use this ‘average’ value of speed bump. This is because the most ‘recent’
speed bump may not be entirely reliable in case the submission was completed too quickly or too
slowly for the most recent order, resulting in an extreme value of speed bump.

Implementation
Basic setup

Similar to previous tutorials we will first import the ‘requests’ package as well as the ‘signal’ and
‘time’ packages in order to create some helpful boilerplate code to handle exceptions and CTRL+C
commands to stop the algorithm. Then we will save the API KEY for easy access.

Copyright © 2019, Rotman School of Management. 4

Before we move onto writing an algorithm to demonstrate a speed bump, let’s start with a simple
order submission to observe the issue of rate limiting. First, we can define a few key variables so that
we can use them as reference later.

“COUNT” refers to the # of orders to achieve the total target volume. Since we are only allowed to
submit an order with a volume of 1,000 shares and we want to achieve a total volume of 20,000
shares, we need to submit 20 orders (=20,000 shares / 1,000 shares).

The “number_of_orders” variable refers to the # of submitted orders. Because we do not submit any
orders at the beginning, its starting value is set to 0.

Lets now setup the basic main() method shown below that will submit orders in order to buy a total
volume of 20,000 shares. The “Number of orders” variable is defined as “global” so that we can refer
to it later under the ‘while’ loop. The logic here is simple: keep submitting an order to buy 1,000
shares of Algo until the maximum # of orders are reached.

Copyright © 2019, Rotman School of Management. 5

We first use the “number_of_orders” variables to check how many orders are submitted. If it is less
than the maximum # of orders, then the algorithm will keep submitting an order. Furthermore, each
time we submit a buy order we send a GET request to http://localhost\v1\orders with the query
parameter equal to the ticker, type of order, price, and action.

Then, once each order is submitted, we increase the “number_of_orders” variable by one, in order to
count the # of orders submitted. The algorithm will continue until the 20 orders are submitted.

However, not surprisingly, you will notice that your algorithm will only submit 5 orders successfully,
and encounter the following “rate-limiting” error messages for the 15 orders that were submitted
unsuccessfully.

As you may know, this is simply because the case only allows for an order submission of 5 orders per
second and we are submitting 20 orders at the same time. Therefore, we need to have a better control
for this order submission logic.

Speed bump

In order to solve this issue, we will now implement the speed bump discussed earlier.

One simple solution may be to “pause” the algorithm for a certain time period. However, as discussed
under the “Overview” section, we will try to implement a logic such that the speed bump value is
dynamically updated and adjusted according to the current order execution time and the case
environment.

First, we want to define another variable under other case variables as shown below.

The new variable, “total_speedbumps”, refers to the total aggregate value of speed bump that we
used. Later, this variable will be used to calculate the ‘average’ speed bump value which will be
applied to our order execution.

In order to calculate the speed bump discussed earlier, let’s now create a method that calculate the
endogenous speed bump.

http://localhost/v1/orders

Copyright © 2019, Rotman School of Management. 6

First, in order to keep using and referring to the two variables, “total_speedbumps” and
“number_of_orders”, outside of this method, it is important to make them ‘global’ variables. This
ensures that we are changing the global variables, not local variables only defined within the method.

Then, we calculate the speed bump of the current order. Then, it is added to the aggregated value of
speed bumps, which is then divided by the total number of orders submitted so far. In other words,
this method computes an ‘average’ value of speed bump and applies it to the algorithm to pause after
an order submission before moving onto the next logic.

One may simply decide to use the ‘current’ speed bump calculated based on the most recent order
and it may work well in this case or any other cases where the order submission logic is relatively
simple. However, it may not be optimal to do so especially when the submission of the most recent
order was completed too quickly or too slowly, as the speed bump may be an extreme value which
may not be reliable.

In order to call our speed bump method, we need to calculate our transaction time and then call it
from the main method.

Copyright © 2019, Rotman School of Management. 7

The main method is updated mainly in order to calculate the transaction time by call the time method.
The “start” time represents the time before the order is submitted. Then, we will use the time method
again to record the time after the order submission. Essentially, we define a transaction time as the
difference between the time right before and after the order submission by using the time methods.
Then, this transaction time is used in our speed bump method in order to calculate the speed bump
value for this order.

This logic is repeated until 20 orders are successfully submitted.

Copyright © 2019, Rotman School of Management. 8

Running the Algorithm

Here’s how the complete algorithm should look like:

Copyright © 2019, Rotman School of Management. 9

In order to run the algorithm, ensure that the RIT client is connected and the REST API is enabled.
Then, from the working directory, enter python <FILENAME>.py into the prompt. To stop the
algorithm before the case is finished, press CTRL+C. If the file name has any space in it, please enter
python “<FILENAME>.py”

Note: if students make changes to the algorithm's code while it is running in the prompt, those changes
will not be reflected in what is running. Students will have to stop and restart the algorithm.

	Introduction
	Implementation
	Basic setup
	Speed bump

	Running the Algorithm

