
Copyright © 2019, Rotman School of Management. 1

RIT Case Tutorial – ALGO2

Build 1.00

ALGO2 (Market Making) Python Algorithm Tutorial

Table of Contents
Introduction ... 2

Basic Setup.. 2

Algorithm Logic.. 4

Overview .. 4

Helper Methods ... 5

Implementation ... 7

Re-Submitting Orders ... 9

Overview .. 9

Helper Methods ... 10

Implementation ... 11

Running the Algorithm ... 14

Copyright © 2019, Rotman School of Management. 2

Introduction
This tutorial is designed for students who are planning to use Python to build a market-making
algorithm for ALGO2 using RIT REST API. Students are expected to have followed the RIT REST API
User Guide1 to complete a python algorithm for ALGO1, and also have read the case brief2 for ALGO2
so that students have a firm understanding of the case. This tutorial is not required to complete the
algorithm for the case as students can build it without this tutorial, but some students may find it
very useful when developing an algorithm for this case that is more ‘intelligent’ and ‘adaptable’.

Basic Setup
Similar to previous tutorials, we will first import the ‘requests’ package as well as the ‘signal’ and
‘time’ packages in order to create some helpful boilerplate code to handle exceptions and CTRL+C
commands to stop the algorithm. Then we will save the API KEY for easy access.

We now need to define some simple constants that will act as ‘settings’ for our algorithm.

In order to have stable execution we need to pause the program after submitting our orders. The
‘SPEEDBUMP’ constant3 is how long the program will pause after submitting each set of orders.

1 “RIT – User Guide – REST API Documentation.pdf”
2 “RIT – Case Brief – ALGO2 – Algorithmic Market Making.pdf”
3 We will further discuss and improve this logic in a separate tutorial document, “RIT – Algo Tutorial – Python - Speedbump.pdf”

Copyright © 2019, Rotman School of Management. 3

 In order to capture the maximum amount of profit when we submit orders we should be submitting
the maximum amount of shares. The ‘MAX_VOLUME’ constant represents the maximum amount of
shares we can purchase each order.

 The ‘MAX_ORDERS’ constant is the maximum number of orders with ‘MAX_VOLUME’ we can submit
without exceeding our position limit. Our position limit in this case is 25,000 and the ‘MAX_VOLUME’
is 5000. Therefore our ‘MAX_ORDERS’ in this case is 5.

In order to capture profit between the bid and ask prices we need to set a minimum spread between
the bid and ask prices before submitting our orders. The ‘SPREAD’ constant is the minimum bid ask
spread before submitting our orders. Having a set spread equal to .05 insures we are always
capturing a 4 cent profit between the bid and ask prices. This is because our bid price is 5 cents lower
than our ask price. Then we are losing 1 cents due to a commission fee of 0.5 cent per transaction (in
case of ALGO2a for example). Students are suggested to improve their logic on determining the
spread according to the case dynamics.

While there are many ways to keep track where we are in an algorithm, we will use the current time
(or ‘tick’) of the simulation case to signal when the algorithm should run. Therefore, we then need a
method to get the current case status and return the current time (or ‘tick’). So we create a helper
method to send a GET request to http://localhost:9999/v1/case.

We’ll now set up the basic setup of a main() method as shown below.

Operationally, when the file is run with python <FILENAME>.py, the get_tick(session) method will be
called to return the current time of the case, and while (a) the time is greater than 5 seconds into the
case and less than 295 seconds into the case, and (b) the 'shutdown' flag is false, the code in the while-
loop will run. As the inline comment notes, it's important to update the tick variable at the end of the
loop, so that the algorithm knows whether to continue running the while-loop or not.

http://localhost:9999/v1/case

Copyright © 2019, Rotman School of Management. 4

Algorithm Logic
Overview
Now that we have our basic main() method setup, we need to program the trading logic for our
algorithm.
Let’s start with a simple version of our algorithm that doesn’t account for market risk and will just
buy and sell shares. The algorithm will buy and sell the maximum amount of shares possible when
(a) there is no open orders and (b) the spread between the bid price and the ask price is greater than
our equal to the set ‘SPREAD’ defined above. To better illustrate this look below.

The book trader on the left shows a condition in which we would buy and sell the maximum number
of shares. The current bid price is underlined in green. The current ask price is underlined in red. The
bid ask spread is the bid price – ask price which is equal to .06. Since (a) .06 is greater than or equal
to our set ‘SPREAD’ defined earlier of .05 and (b) there is no open orders in the book. This would be
a condition were we would buy and sell the maximum number of shares.

The book trader on the right shows the result after buying and selling the maximum amount of
shares. This is done by submitting the maximum number of orders with the maximum volume each
order. This was defined earlier as ‘MAX_VOLUME’ and ‘MAX_ORDERS’. If this is done correctly when
one side gets filled completely it will never exceed our position limit. In this case it is true due to the
fact our position limit is 25,000. If either side gets filled completely it will equal our position limit.

Copyright © 2019, Rotman School of Management. 5

Helper Methods
In order to capture the bid ask spread. We need a way to get the current bid and ask prices for our
security. Let’s add a method to get the current bid and ask prices.

We can get the market book for a security by submitting a GET request to
http://localhost:9999/v1/securities/book, with a query parameter of ticker equal to the ticker. After
checking the response is ‘OK’, we then parse the response. Finally, we return the price of the first bid
and price of the first as a tuple, as they are sorted in order of competitive price.

In order to figure out if there are open orders we need to find the status of the current open orders
in the case. Let’s add the following two methods that will return information about our open buy and
sell orders.

http://localhost:9999/v1/securities/book

Copyright © 2019, Rotman School of Management. 6

We can get all open orders by sending a GET request to http://localhost:9999/v1/orders?status=OPEN.
If the response is ‘ok’ we instantiate the total volume and the open orders attributes we are going to
return. Each list position represents one order. For example position 2 of ‘ids’, ‘prices’,
‘order_volumes’, and ‘volume_filled’ would represent the attributes of one open order.

We then loop through all open orders and check if it is a ‘BUY’ or a ‘SELL’ order. If this the case we
take that order and append its volume, volume filled, price, and order id to the lists instantiated
previously. Then add its volume to the total volume. After we have looped through all open orders
we finally return the lists representing each open sell/buy orders attributes and the total volume.

We need a way to buy and sell our orders. Let’s add a method that buys and sells the maximum
amount of shares.

This method takes in 3 parameters the current session, the price we will sell, and the price we buy
at. We loop for the maximum number of orders defined earlier as ‘MAX_ORDERS’. Each time we
submit two POST requests to http://localhost:9999/v1/orders. These two requests represent the
buy and sell orders. By the end of the method both bid and ask side should contain the maximum
number of orders we can submit and the maximum volume for each order.

http://localhost:9999/v1/orders?status=OPEN
http://localhost:9999/v1/orders

Copyright © 2019, Rotman School of Management. 7

Implementation
In order to figure out when to submit orders, we need to get information about current bid and ask
prices and the state of our current open orders.

In order to keep track of the state of our current open order, we need a set of variables to hold the
information about our open orders. We instantiate a set of lists each representing an attribute of our
open orders. The position of each list corresponds to the same order. For example, position 1 of the
‘sell_ids’, ‘sell_prices’, ‘sell_volumes’, and ‘volume_filled_sells’ lists would represent one sell order.
Then we instantiate a variable to hold our total open sell orders or open buy orders volume.

At the start of our ‘while loop’, we call our open_sells(), open_buys() methods and assign the output
to the variables we instantiated above. We then call our ticker_bid_ask() method and assign it to our
‘bid_price’, and ‘ask_price’ variables. This will insure that, as the case is running, we will be able to
keep track of the current open buy and sell orders. As well as the current bid and ask prices.

Copyright © 2019, Rotman School of Management. 8

Let’s now set up when to buy and sell shares as well as the prices we will sell and buy them at.

We set the sell price equal to the current ask price and the buy price equal to the current bid price.
This insures our order will be the best price when submitted.

We will buy and sell when (a) there is no open orders and (b) when the bid ask spread is greater than
or equal to our set ‘SPREAD’ defined earlier.

To order our order we call our buy_sell() method defined with our current session, sell price, and buy
price as parameters.

Copyright © 2019, Rotman School of Management. 9

Re-Submitting Orders
Overview
We now have a basic working version working of our algorithm. However our algorithm is still
subject to significant market risk. To better illustrate this, look below.

When orders are submitted, it is possible one side gets filled and one side does not. This is seen in
the case above as the ask sides orders have gotten completely filled while the bid side still has all
open orders pending. This is not ideal because it results in a positive or negative position exposing
us to market risk. The longer this is the case, the longer we are exposed to market risk.

The way to solve this is to cancel our current open orders once one side has been completely filled,
and re-submit orders at a more competitive price. This will bring our position back to zero quicker
because are open orders will get filled quicker. As a result this will decrease our market risk.

Copyright © 2019, Rotman School of Management. 10

Helper Methods
We need a way to cancel our open orders and re-submit them. Let’s create a new method for this
logic.

The method takes in the current session, how many open orders are in the current case, a set of lists
containing the attributes for each order, the price we will sell or buy the new orders at, and an action
to communicate whether to re-buy or re-sell. The position of each lists corresponds to an individual
order. For example position 2 in the ‘ids’, ‘volumes_filled’, and ‘volumes’ lists corresponds to the
attributes of one order.

The method loops through all the open orders. First we delete the order by sending a DELETE request
to http://localhost:9999/v1/orders/id where the ‘id’ is the id of the open order we are going to
delete. If the delete is ‘ok’ we will re-buy or re-sell the order depending on the ‘action’ taken in earlier.
This is done by sending a POST request to http://localhost:9999/v1/orders with the query
parameters equal to our ticker, the volume of the order we just deleted, the price we want to re-order
our order at and the action to take.

Copyright © 2019, Rotman School of Management. 11

Implementation
In order to figure out when to implement this logic, we need to figure out when a single side of the
book has been completely filled.

In order to keep track of a single side has been filled we instantiate two important variables. The
‘single_side_filled’ variable represents if just one side of the book has been completely filled. The
‘single_side_transaction_time’ represents the last time a single side of the book was filled.

If both sides orders have been filled we set the ‘single_side_filled’ variable to false. This is due to the
fact that a single side is not filled because both sides have been filled.

We mark when a single side has been filled when a) there are outstanding orders, b) our
‘single_side_filled’ has not been marked as true already and c) the bid or ask side has been completely
filled. If these conditions are met we will set ‘single_side_filled’ equal to true. Then set when it was
filled by getting the current tick and setting it to our ‘single_side_transaction_time’.

Copyright © 2019, Rotman School of Management. 12

We’ll now set up when to re-submit our orders.

In order to cancel and re-submit our open orders, we need to figure out when one side is completely
filled and which one. Once we figure this out we can figure out to re-buy or re-sell. This is done by
checking the volume of each side and if it is equal to 0.

We then check if our current open orders prices are at the top of the book. If this is the case we don’t
re-order any orders and go to the next iteration of the loop.

If this is not the case we check if it has been 3 seconds or more since one side of the book has gotten
filled. This insures that we give enough time for the original orders to be filled.

Copyright © 2019, Rotman School of Management. 13

We will then order under two conditions. We first check if a) the price we will re-sell or re-buy at
makes a profit. We do this by looking at the price we will re-order at and the price of our side that got
filled at was. To calculate the profit we find the different between the buy and the sell order then
subtract 2 cents which would represent the commission fee for both orders. When then check if b)
it has been more than 6 seconds since one side of the book was filled.

If one of these two conditions are met we set up the parameters to re-order. We then re-order our
open orders by calling the re_order() method.

Now that we implemented this logic, we are going to take a look at the entire code of our algorithm
and try running it in the next chapter.

Copyright © 2019, Rotman School of Management. 14

Running the Algorithm
Here’s how the complete algorithmic command should look like:

Copyright © 2019, Rotman School of Management. 15

Copyright © 2019, Rotman School of Management. 16

Copyright © 2019, Rotman School of Management. 17

Copyright © 2019, Rotman School of Management. 18

In order to run the algorithm, ensure that the RIT client is connected and the REST API is enabled.
Then, from the working directory, enter python <FILENAME>.py into the prompt. To stop the
algorithm before the case is finished, press CTRL+C. If the file name has any space in it, please enter
python “<FILENAME>.py”

Note: if students make changes to the algorithm's code while it is running in the prompt, those changes
will not be reflected in what is running. Students will have to stop and restart the algorithm.

	Introduction
	Basic Setup
	Algorithm Logic
	Overview
	Helper Methods
	Implementation

	Re-Submitting Orders
	Overview
	Helper Methods
	Implementation

	Running the Algorithm

