-2 Rotman School of Management RIT Case Tutorial - ALGO2
g%é@ UNIVERSITY OF TORONTO Build 1.00

ALGO2 (Market Making) Python Algorithm Tutorial

Table of Contents
INEFOTUCTION ...ttt 2
BASIC SEEUD. ...ttt b ettt h e e b e et et h b e bt ne e e eaea 2
W [To] 1101018 0T | oS 4
OVETVIBW ..ttt e e s h e e b e b bbb e sa s ae b sh e e ab e b sasen s neeanenrs 4
HeIPer MEtNOMS ...coviiieieieeee ettt sr e r e s nrs 5
15000 0] (=3 00153 1 =10 10) o B OO PSSO PPTUPRRUPRRRURRSN 7
ReE-SUDMILEING OTAOTS ...ttt et bt et be s bt et s bt et e sbeeatenbesbeeatenbens 9
OVEIVIBW ..ttt s b bbb e s as e saa s aa s e b e b sae e 9
3 (5§ 1) o\ (=1 s Lo o F OSSP 10
50000 (=3 00153 1 =1 (0) o B OO P ORISR 11

RUNNING the AIGOTITRIM ...couiiiiiii e ettt st ettt e sbe e saeesaneebe e 14

Introduction

This tutorial is designed for students who are planning to use Python to build a market-making
algorithm for ALGOZ2 using RIT REST API. Students are expected to have followed the RIT REST API
User Guide! to complete a python algorithm for ALGO1, and also have read the case brief? for ALGO2
so that students have a firm understanding of the case. This tutorial is not required to complete the
algorithm for the case as students can build it without this tutorial, but some students may find it
very useful when developing an algorithm for this case that is more ‘intelligent’ and ‘adaptable’.

Basic Setup

Similar to previous tutorials, we will first import the ‘requests’ package as well as the ‘signal’ and
‘time’ packages in order to create some helpful boilerplate code to handle exceptions and CTRL+C
commands to stop the algorithm. Then we will save the API KEY for easy access.

1# This is a python example algorithm using REST API for the RIT ALGO2 Case
2 import signal

3 import requests

4 from time import sleep

impert sys

o LA

this class definition allows us to print error messages and stop the program
class ApiException(Exception):
pass

[N I e s LN

18
11# this signal handler allows for a graceful shutdown when CTRL+C is pressed
12 def signal_handler(signum, frame):

13 global shutdown

14 signal.signal(signal.SIGINT, signal.SIG DFL)
15 shutdown = True

16

17 # set your API key to authenticate to the RIT client
18 APT_KEY = {'X-API-Key': 'XC984YR5'}
19 shutdown = False

We now need to define some simple constants that will act as ‘settings’ for our algorithm.

21 #SETTINGS

22 # how long to wait after submitting buy or sell orders
23 SPEEDBUMP = 8.5

24 # maximum number of shares to purchase each order

25 MAX_VOLUME = 5808

26 # maximum number of orders we can submit

27 MAX_ORDERS = 5

28# allowed spread before we sell or buy shares

29 SPREAD = .@5

In order to have stable execution we need to pause the program after submitting our orders. The
‘SPEEDBUMP’ constant3 is how long the program will pause after submitting each set of orders.

1 “RIT — User Guide — REST APl Documentation.pdf”
2 “RIT — Case Brief — ALGO2 — Algorithmic Market Making.pdf”
3 We will further discuss and improve this logic in a separate tutorial document, “RIT — Algo Tutorial — Python - Speedbump.pdf”

In order to capture the maximum amount of profit when we submit orders we should be submitting
the maximum amount of shares. The ‘MAX_VOLUME’ constant represents the maximum amount of
shares we can purchase each order.

The ‘MAX_ORDERS’ constant is the maximum number of orders with ‘MAX_VOLUME’ we can submit
without exceeding our position limit. Our position limit in this case is 25,000 and the ‘MAX_VOLUME’
is 5000. Therefore our ‘MAX_ORDERS’ in this case is 5.

In order to capture profit between the bid and ask prices we need to set a minimum spread between
the bid and ask prices before submitting our orders. The ‘SPREAD’ constant is the minimum bid ask
spread before submitting our orders. Having a set spread equal to .05 insures we are always
capturing a 4 cent profit between the bid and ask prices. This is because our bid price is 5 cents lower
than our ask price. Then we are losing 1 cents due to a commission fee of 0.5 cent per transaction (in
case of ALGOZ2a for example). Students are suggested to improve their logic on determining the
spread according to the case dynamics.

While there are many ways to keep track where we are in an algorithm, we will use the current time
(or ‘tick’) of the simulation case to signal when the algorithm should run. Therefore, we then need a
method to get the current case status and return the current time (or ‘tick’). So we create a helper
method to send a GET request to http://localhost:9999 /v1 /case.

31 # This helper method returns the current 'tick' of the running case.
2 def get_tick(session):
resp = session.get('http://localhost:9999/vl/case’)
if resp.ok:
case = resp.json()
return case['tick']
raise ApiException('Authorization error Please check API key.')

L)

oo

LSRR R WO W W R W N N |

We'll now set up the basic setup of a main() method as shown below.

39 def main():

48 # creates a session to manage connections and requests to the RIT Client
41 with requests.Session() as s:
42 s.headers.update(API_KEY)

43 tick = get tick(s)

[

while the time is between 5 and 295, do the following
while tick > 5 and tick < 295 and not shutdown:

=
=] T Ln F

a

I
[}

refresh the case time. THIS IS IMPORTANT FOR THE WHILE LOOP
tick = get tick(s)

1 if _ _name_ == '_ main__ ':
signal.signal(signal.SIGINT, signal handler)
main()

(S RV W Y, [-
Wk = @ WD

Operationally, when the file is run with python <FILENAME>.py, the get_tick(session) method will be
called to return the current time of the case, and while (a) the time is greater than 5 seconds into the
case and less than 295 seconds into the case, and (b) the 'shutdown' flag is false, the code in the while-
loop will run. As the inline comment notes, it's important to update the tick variable at the end of the
loop, so that the algorithm knows whether to continue running the while-loop or not.

http://localhost:9999/v1/case

Algorithm Logic

Overview
Now that we have our basic main() method setup, we need to program the trading logic for our
algorithm.

Let’s start with a simple version of our algorithm that doesn’t account for market risk and will just
buy and sell shares. The algorithm will buy and sell the maximum amount of shares possible when
(a) there is no open orders and (b) the spread between the bid price and the ask price is greater than
our equal to the set ‘SPREAD’ defined above. To better illustrate this look below.

[Book Trader =3 Ld Book Trader == |
Ticker:|ALGO |.| . OFF w100 [Ho:t |2 Ticker: ALGO - |05: OFF W00 ot |5
Last: 19.94 Position: 0 Cost 0.00 Last: 19.37 Position: 0 Cosk: 0.00
Trader Volume Price Price Valume Trader “~ Trader Volume Price Price Valume Trader E

B ANON 26,200 19.93 19.99 27,500 ANCHN] ANON 22,500 19.90 19.92 3,600 ANON
ANON 20,400 19.91 20.01 21,200 ANCN ANGHN 21,800 13.37 19.94 5,000 i
ANON 27,800 19,90 20,01 22,800 ANCN i 5,000 19.87 13.94 5,000 ii
ANOM 23,000 19.90 20.02 25,700 ANCOM 3 i 5,000 15.87 13.54 5,000 ii =
ANON 27,800 19.89 20.03 22,100 ANON b} 5,000 19.87 13.94 5,000 bij
ANON 29,800 19.89 20.04 25,700 ANOM] 5,000 13.87 13.54 5,000 ii

=l anon 29,700 19.89 20,06 27,000 ANOM | _ i 5,000 18.87 19.95 19,700 ANON
ANOM 25,500 19.38 20.11 20,900 ANON | ANON 4,700 19.86 19.85 23,300 - ANON
ANON 29,900 19,83 20,12 20,300 = ANOM ~ ANON 7,500 19.34 19,96 29,400 © ANOM
ANON 21,300 19,88 20.17 22,500 ANON ANON 25,300 13.33 19.96 25,900 ANON
ANON 28,400 19,83 20.19 23,700 = ANON ANON 23,700 19.33 19.96 20,300 ANON
ANON 25,900 19.86 20.24 24,500 ANON ANON 22,200 19.83 19.96 21,000 ANON

L ANON 20,200 19.84 20.75 27,700 = ANON ANCON 28,200 13.32 19,93 22,300 ANON
ANON 25,700 19.83 20.29 25,200 ANOM ANON 24,000 19.82 19.99 27,600 - ANON
ANON 23,000 19.81 20,30 23,300 ANON ANCN 22,200 19.82 19,99 25,400 ANON
ANON 23,700 19.80 20.30 28,700 ANONM ANON 27,500 13.31 19.99 21,000 © ANOMN
ANCN 29,600 19,80 20.31 28,300 ANOMN ANON 27,800 13.31 20,00 17,100 = ANON
ANON 26,900 19,79 20.33 25,200 ANCM ANON 28,500 19.81 20.01 25,000 - ANON
ANON 28,600 19,79 20.34 22,800 ANCM ANON 22,800 19.31 20.01 20,300 ANOMN
ANON 23,200 19,77 20,33 26,100 ANCM ANON 20,500 13.81 20,02 26,400 ANON
AMNOM 24,300 19.75 20,39 25,300 ANOM ANCN 27,200 19.80 20,03 22,500 ANON

w ANON 20,100 19.74 20.40 27,100 ANOMN = ¥ ANON 27,300 19.80 20.03 27,700 AMNOM B

The book trader on the left shows a condition in which we would buy and sell the maximum number
of shares. The current bid price is underlined in green. The current ask price is underlined in red. The
bid ask spread is the bid price - ask price which is equal to .06. Since (a) .06 is greater than or equal
to our set ‘SPREAD’ defined earlier of .05 and (b) there is no open orders in the book. This would be
a condition were we would buy and sell the maximum number of shares.

The book trader on the right shows the result after buying and selling the maximum amount of
shares. This is done by submitting the maximum number of orders with the maximum volume each
order. This was defined earlier as ‘MAX_VOLUME’ and ‘MAX_ORDERS'. If this is done correctly when
one side gets filled completely it will never exceed our position limit. In this case it is true due to the
fact our position limit is 25,000. If either side gets filled completely it will equal our position limit.

Helper Methods
In order to capture the bid ask spread. We need a way to get the current bid and ask prices for our
security. Let’s add a method to get the current bid and ask prices.

39 # This helper method returns the bid and ask first row for a given security.
40 def ticker_bid_ask(session, ticker):

41 payload = {'ticker': ticker}
42 resp = session.get('http://localhost:9999/vl/securities/book', params=payload)
43 if resp.ok:

44 book = resp.json()
return book['bids'][@]['price'], book['asks'][@]['price"']
raise ApiException('Authorization error Please check API key.')

c
We can get the market book for a security by submitting a GET request to
http://localhost:9999 /v1/securities/book, with a query parameter of ticker equal to the ticker. After
checking the response is ‘OK’, we then parse the response. Finally, we return the price of the first bid
and price of the first as a tuple, as they are sorted in order of competitive price.

In order to figure out if there are open orders we need to find the status of the current open orders
in the case. Let’s add the following two methods that will return information about our open buy and
sell orders.

A8 # This helper method returns information about all the open sell orders
49 def open_sells(session):
58 resp = session.get('http://localhost:9999/v1l/orders?status=0PEN")

51 if resp.ok:

52 open_sells volume = @ # total combined volume of all open sells
53 ids = [] # all open sell ids

54 prices = [] # all open sell prices

55 order_volumes = [] # all open sell wvolumes

56 volume_filled = [] # volume filled for each open sell order
57

58 open_orders = resp.json()

59 for order in open_orders

68 if order['action'] == 'SELL'

61 volume_filled.append(order['quantity filled'])

62 order_volumes.append(order['quantity'])

63 open_sells_volume = open_sells_wolume + order['quantity']
64 prices.append(order['price'])

65 ids.append(order['order_id'])

66 return volume_filled, open_sells _wvolume, ids, prices, order_volumes
68 # this helper method returns information about all open buy orders

69 def open_buys(session):

78 resp = session.get('http://localhost:9999/v1l/orders?status=0PEN")
71 if resp.ok:

7 open_buys_volume = @ # total combined volume of all open buys
73 ids = [] # all open buy ids

74 prices = [] # all open buy prices

75 order_volumes = [] # all open buy volumes

76 volume_filled = [] # volume filled of each open buy order

78 open_orders = resp.json()

79 for order in open_orders

80 if order['action'] == 'BUY"':

81 open_buys_volume = open_buys_wvolume + order['quantity']
82 volume_filled.append(order['quantity filled'])

83 order_volumes.append(order['quantity'])

84 prices.append(order['price'])

85 ids.append(order['order_id'])

86

(=]
~J

return volume_filled, open_buys_volume, ids, prices, order_volumes

http://localhost:9999/v1/securities/book

We can get all open orders by sending a GET request to http://localhost:9999/v1/orders?status=OPEN.
If the response is ‘ok’ we instantiate the total volume and the open orders attributes we are going to
return. Each list position represents one order. For example position 2 of ‘ids’
‘order_volumes’, and ‘volume_filled’ would represent the attributes of one open order.

, ‘prices’,

We then loop through all open orders and check if it is a ‘BUY’ or a ‘SELL’ order. If this the case we
take that order and append its volume, volume filled, price, and order id to the lists instantiated
previously. Then add its volume to the total volume. After we have looped through all open orders
we finally return the lists representing each open sell/buy orders attributes and the total volume.

We need a way to buy and sell our orders. Let’s add a method that buys and sells the maximum
amount of shares.

2
[Xs]

S # this helper method will buy and sell the maximum number of shares
def buy_sell(session, sell price, buy price):
for i in range(MAX_ORDERS):
session.post('http://localhost:9999/vl/orders', params = {'ticker': "ALGO',
"type': '"LIMIT', 'quantity': MAX VOLUME, 'price': sell price, 'action': 'SELL'})
session.post('http://localhost:9999/vl/orders', params = {'ticker': 'ALGO',
"type': "LIMIT', 'quantity': MAX_VOLUME, 'price': buy_price, 'action': 'BUY'})

3

i

[V N T]

WD w0 D0
[

L

This method takes in 3 parameters the current session, the price we will sell, and the price we buy
at. We loop for the maximum number of orders defined earlier as ‘MAX_ORDERS’. Each time we
submit two POST requests to http://localhost:9999 /vl /orders. These two requests represent the
buy and sell orders. By the end of the method both bid and ask side should contain the maximum
number of orders we can submit and the maximum volume for each order.

http://localhost:9999/v1/orders?status=OPEN
http://localhost:9999/v1/orders

Implementation
In order to figure out when to submit orders, we need to get information about current bid and ask

prices and the state of our current open orders.

97 def main():

98 # instantiate variables about all the open buy orders

99 buy_ids = [] # order ids

100 buy_prices = [] # order prices

181 buy_volumes = [] # order volumes

182 volume_filled buys = [] # amount of wvolume filled for each order
183 open_buys_volume = @ # combined volume from all open buy orders
104

185 # instantiate wvariables about all the open sell orders

186 sell ids = []

187 sell prices = []

188 sell volumes = []

189 volume_filled sells = []

118 open_sells volume = @

1lilal

112 # creates a session to manage connections and requests to the RIT Client
113 with requests.Session() as s:

114 s.headers.update(API_KEY)

115 tick = get_tick(s)

116

117 # while the time is between 5 and 295, do the following

118 while tick > 5 and tick < 295 and not shutdown:

119 # update information about the case

128 volume_filled sells, open_sells_volume, sell ids, sell prices, sell volumes = open_sells(s)
121 volume_filled_buys, open_buys_volume, buy_ids, buy_prices, buy volumes = open_buys(s)
122 bid_price, ask_price = ticker_bid_ask(s, 'ALGO')

123

124 #refresh the case time. THIS IS IMPORTANT FOR THE WHILE LOOP
125 tick = get_tick(s)

In order to keep track of the state of our current open order, we need a set of variables to hold the
information about our open orders. We instantiate a set of lists each representing an attribute of our
open orders. The position of each list corresponds to the same order. For example, position 1 of the
‘sell_ids’, ‘sell_prices’, ‘sell_volumes’, and ‘volume_filled_sells’ lists would represent one sell order.
Then we instantiate a variable to hold our total open sell orders or open buy orders volume.

At the start of our ‘while loop’, we call our open_sells(), open_buys() methods and assign the output
to the variables we instantiated above. We then call our ticker_bid_ask() method and assign it to our
‘bid_price’, and ‘ask_price’ variables. This will insure that, as the case is running, we will be able to
keep track of the current open buy and sell orders. As well as the current bid and ask prices.

Let’s now set up when to buy and sell shares as well as the prices we will sell and buy them at.

117 # while the time is between 5 and 295, do the following

118 while tick > 5 and tick < 295 and not shutdown:

119 # update information about the case

128 volume_filled sells, open_sells volume, sell ids, sell prices, sell volumes = open_sells(s)
121 volume_filled buys, open_buys_volume, buy_ids, buy_prices, buy_volumes = open_buys(s)
122 bid_price, ask_price = ticker_bid_ask(s, 'ALGO')

123

124 # check if you have @ open orders

125 if(open_sells_volume == © and open_buys_volume == @):

126

127 # calculate the spread between the bid and ask prices

128 bid_ask_spread = ask_price - bid_price

129

138 # set the prices

131 sell price = ask_price

132 buy_price = bid_price

133

134 # the calculated spread is greater or equal to our set spread
135 if(bid_ask_spread >= SPREAD):

136 # buy and sell the maximum number of shares

137 buy_sell(s, sell price, buy_price)

138 sleep(SPEEDBUMP)

139

148 #refresh the case time. THIS IS IMPORTANT FOR THE WHILE LOOP

141 tick = get_tick(s)

We set the sell price equal to the current ask price and the buy price equal to the current bid price.
This insures our order will be the best price when submitted.

We will buy and sell when (a) there is no open orders and (b) when the bid ask spread is greater than
or equal to our set ‘SPREAD’ defined earlier.

To order our order we call our buy_sell() method defined with our current session, sell price, and buy
price as parameters.

Re-Submitting Orders

Overview
We now have a basic working version working of our algorithm. However our algorithm is still
subject to significant market risk. To better illustrate this, look below.

i 5

L Book Trader [==]
Ticker: ALGO - : OFF WV:|100 o1 =
Last: 20.02 Peosition: -25000 Cosk 20.02
-~ Trader Volume Price Price Volume Trader =
ANON 18,800 20,02 20.04 20,100 AMON
ANON 25,500 20.01 20.09 26,200 AMNON

—| ANOM 21,400 20,00 20,15 7,400 AMON
1 ANON 26,700 20.00 20.15 23,000 AMON
ANOM 27,800 20.00 20,16 25,500 AMOM
|| ANON 20,300 19,98 20,16 24,100 AMON
ANON 22,700 19.96 20,17 26,400 AMON
ANOM 20,700 19.96 20,17 20,200 ANOM =
ANON 26,700 19,95 20,18 26,600 AMON
ANON 22,700 19.95 20,23 26,500 AMON
ANOM 21,500 19.94 20,25 21,200 AMOM
AMNON 25,500 19,93 20,26 25,700 AMON
ANON 25,800 19.89 20.29 25,800 AMON
ANON 15,500 19.88 20,29 28,400 AMON
ANON 23,500 19.88 20,32 22,000 AMON
ANON 29,400 19.88 20,33 23,200 AMOM
i 5,000 19.88 20,38 22,600 AMON
ii 5,000 19.88 20,42 27,500 AMON
i 5,000 19.88 20,46 30,000 AMON
i 5,000 19.88 20,46 29,100 AMON
ii 5,000 19.88 20,47 22,800 AMON
¥ ANON 28,200 19.88 20,58 21,600 AMON ¥

When orders are submitted, it is possible one side gets filled and one side does not. This is seen in
the case above as the ask sides orders have gotten completely filled while the bid side still has all
open orders pending. This is not ideal because it results in a positive or negative position exposing
us to market risk. The longer this is the case, the longer we are exposed to market risk.

The way to solve this is to cancel our current open orders once one side has been completely filled,
and re-submit orders at a more competitive price. This will bring our position back to zero quicker
because are open orders will get filled quicker. As a result this will decrease our market risk.

Helper Methods
We need a way to cancel our open orders and re-submit them. Let’s create a new method for this
logic.

97 # this helper method re-orders all open buys or sells
98 def re_order(session, number of orders, ids, volumes filled, volumes, price, action):
99 for i in range(number_ of orders):
id = ids[1i]
volume = volumes[i]
volume_filled = wvolumes_filled[i]
if the order is partially filled.
if(volume_filled != B):
volume = MAX_VOLUME - volume_filled

u
oL

@ AL

[WH N)

(=X BV =

delete then re-purchase.
deleted = session.delete('http://localhost:9999,/vl/orders/{}"' .format(id))
if(deleted.ok):
session.post('http://localhost:9999/vl/orders', params = {'ticker': 'ALGO',
"type': 'LIMIT', 'gquantity': volume, 'price': price, 'action': action})

| = R o B v I v T s B o T v v I IR
&= WD ca

[y
[
=

112

The method takes in the current session, how many open orders are in the current case, a set of lists
containing the attributes for each order, the price we will sell or buy the new orders at, and an action
to communicate whether to re-buy or re-sell. The position of each lists corresponds to an individual
order. For example position 2 in the ‘ids’, ‘volumes_filled’, and ‘volumes’ lists corresponds to the
attributes of one order.

The method loops through all the open orders. First we delete the order by sending a DELETE request
to http://localhost:9999 /v1/orders/id where the ‘id’ is the id of the open order we are going to
delete. If the delete is ‘ok’ we will re-buy or re-sell the order depending on the ‘action’ taken in earlier.
This is done by sending a POST request to http://localhost:9999/v1/orders with the query
parameters equal to our ticker, the volume of the order we just deleted, the price we want to re-order
our order at and the action to take.

Implementation
In order to figure out when to implement this logic, we need to figure out when a single side of the
book has been completely filled.

128 # instantiated variables when just one side of the book has been completely filled
129 single_side_filled = False

13 single_side_transaction_time = @

131

132 # creates a session to manage connections and requests to the RIT Client

133 with requests.Session() as s:

134 s.headers.update(API_KEY)

135 tick = get tick(s)

136

137 # while the time is between 5 and 295, do the following

138 while tick > 5 and tick < 295 and not shutdown:

139 # update information about the case

148 volume_filled sells, open_sells_volume, sell ids, sell prices, sell volumes = open_sells(s)
141 volume_filled buys, open_buys_volume, buy ids, buy_prices, buy_volumes = open_buys(s)
142 bid_price, ask_price = ticker_bid_ask(s, 'ALGO'")

143

144 # check if you have @ open orders

145 if(open_sells_volume == @ and open_buys_volume == @):

146 # both sides are filled now

147 single side filled = False

148

149 # calculate the spread between the bid and ask prices

150 bid_ask_spread = ask_price - bid_price

151

152 # set the prices

153 sell price = ask_price

154 buy_price = bid_price

155

156 # the calculated spread is greater or equal to our set spread

157 if(bid_ask_spread »= SPREAD):

158 # buy and sell the maximum number of shares

159 buy_sell(s, sell price, buy_price)

160 sleep(SPEEDBUMP)

161

162 # there are oustanding open orders

163 else:

164 # one side of the book has no open orders

165 if(not single_side filled and (open_buys_volume == @ or open_sells_volume == 8)):
166 single_side_filled = True

167 single_side_transaction_time = tick

In order to keep track of a single side has been filled we instantiate two important variables. The
‘single_side_filled’ variable represents if just one side of the book has been completely filled. The
‘single_side_transaction_time’ represents the last time a single side of the book was filled.

If both sides orders have been filled we set the ‘single_side_filled’ variable to false. This is due to the
fact that a single side is not filled because both sides have been filled.

We mark when a single side has been filled when a) there are outstanding orders, b) our
‘single_side_filled’ has not been marked as true already and c) the bid or ask side has been completely
filled. If these conditions are met we will set ‘single_side_filled’ equal to true. Then set when it was
filled by getting the current tick and setting it to our ‘single_side_transaction_time’.

We'll now set up when to re-submit our orders.

there are oustanding open orders
else:
one side of the book has no open orders
if(not single_side_filled and (open_buys_wolume == @ or open_sells wolume == 8)):
single_side filled = True
single_side transaction_time = tick

ask side has been completely filled
if(open_sells volume == @8):
current buy orders are at the top of the book
if(buy price == bid price):
continue # next iteration of loop

its been more than 3 seconds since a single side has been completely filled
elif(tick - single_ side_transaction_time >= 3):

calulate the potential profits you can make

next_buy price = bid_price + .81

potential profit = sell price - next_buy price - .82

o

1 # potential profit is greater than or equal to a cent or its been more than 6 seconds
2 if(potential_profit >= .21 or tick - single_side_transaction_time >= 6):

3 action = 'BUY'

4 number_of_crders = len(buy_ids)
5

6

2 Ca £a Ca ca ca co

buy_price = bid_price + .21

price = buy_price

ids = buy_ids

velumes = buy_wolumes
volumes_filled = wolume_filled buys

delete buys and re-buy
re_order(s, number_of_orders, ids, volumes_filled, wolumes, price, action)
sleep(SPEEDBUMP)

bid side has been completely filled
elif{open_buys_volume == @):
current sell orders are at the top of the book
if(sell price == ask _price):
continue # next iteration of loop

o

2
g
99

&

its been more than 3 seconds since a single side has been completely filled
elif(tick - single_side_transaction_time »>= 3):

calculate the potential profit you can make

next_sell price = ask_price - .81

potential profit = next_sell_price - buy price - .82

d ka

oo B

-

potential profit is greater than or equal to a cent or its been more than & seconds
if(potential profit >= .81 or tick - single_side_transaction_time >= 6):

action = "SELL'

number_of_orders = len(sell ids)

sell price = ask_price - .81

price = sell price

ids = sell_ids

volumes = sell wolumes

volumes_filled = wolume_filled sells

[R s %

ol el el el el T e e}
N s pd e ® W0

.

delete sells then re-sell
re_order(s, number_of orders, ids, volumes_filled, wvolumes, price, action)
sleep(SPEEDBUMP)

In order to cancel and re-submit our open orders, we need to figure out when one side is completely

L o o e
rii i S S
ca

w

filled and which one. Once we figure this out we can figure out to re-buy or re-sell. This is done by
checking the volume of each side and if it is equal to 0.

We then check if our current open orders prices are at the top of the book. If this is the case we don’t
re-order any orders and go to the next iteration of the loop.

If this is not the case we check if it has been 3 seconds or more since one side of the book has gotten
filled. This insures that we give enough time for the original orders to be filled.

We will then order under two conditions. We first check if a) the price we will re-sell or re-buy at
makes a profit. We do this by looking at the price we will re-order at and the price of our side that got
filled at was. To calculate the profit we find the different between the buy and the sell order then
subtract 2 cents which would represent the commission fee for both orders. When then check if b)
it has been more than 6 seconds since one side of the book was filled.

If one of these two conditions are met we set up the parameters to re-order. We then re-order our
open orders by calling the re_order() method.

Now that we implemented this logic, we are going to take a look at the entire code of our algorithm
and try running it in the next chapter.

Running the Algorithm

Here’s how the complete algorithmic command should look like:

1# This is a python example algorithm using REST API for the RIT ALGOD2 Case
2 import signal

3 import requests

4 from time import sleep

5 import sys

6

7 # this class definition allows us to print error messages and stop the program
& class ApiException(Exception):

9 pass
1@
11 # this signal handler allows for a graceful shutdown when CTRL+C is pressed
12 def signal_handler{signum, frame):
13 global shutdown
14 signal.signal({signal.SIGINT, signal.SIG DFL)
15 shutdown = True
16
17 # set your API key to authenticate to the RIT client
18 APT_KEY = {'X-API-Key': "XC984YR5'}
19 shutdown = False
28
21 #SETTINGS
22 # how long to wait after submitting buy or sell orders
23 SPEEDBUMP = @.5
24 # maximum number of shares to purchase each order
25 MAX_VOLUME = 5gee
26 # maximum number of orders we can submit
27 MAX_ORDERS = 5
28 # allowed spread before we sell or buy shares
29 SPREAD = .85
3@
31 # This helper method returns the current 'tick’' of the running case.
32 def get_tick(session):
33 resp = session.get('http://localhost:9999/vl/case’)
34 if resp.ok:

35 case = resp.json()

36 return case['tick’]

37 raise ApiException('Authorization error Please check API key.')
38

39 # This helper method returns the bid and ask first row for a given security.
46 def ticker_bid_ask(session, ticker):
41 payload = {'ticker’: ticker]}

42 resp = session.get('http://localhost:9999 /vl /securities /book"’, params=payload)
43 if resp.ok:

44 book = resp.json()

45 return book['bids'][@]["price’'], book['asks'][@][price’]

46 raise ApiException('Authorization error Please check APT key.")

A7

Copyright © 2019, Rotman School of Management.

14

48 # This helper method returns information about all the open sell orders
49 def open_sells(session):

50 resp = session.get(http://localhost:9999/vl/orders?status=0PEN")
51 if resp.ok:

52 open_sells volume = @ # total combined volume of all open sells
53 ids = [] # all open sell ids

54 prices = [] # all open sell prices

55 order_volumes = [] # all open sell volumes

56 volume filled = [] # volume filled for each open sell order
57

58 open_orders = resp.json()

59 for order in open_orders:

60 if order['action’'] == "SELL':

61 volume filled.append(order| quantity filled'])

62 order_volumes.append(order["quantity’])

63 open_sells volume = open_sells volume + order[quantity’]
64 prices.append(order[price’])

65 ids.append(order[order_id'])

66 return volume_filled, open_sells_volume, ids, prices, order_volumes
67

68 # this helper method returns information about all open buy orders

69 def open_buys(session):

70 resp = session.get(http://localhost:9999/vl/orders?status=0PEN")
71 if resp.ok:

72 open_buys wvolume = @ # total combined volume of all open buys
73 ids = [] # all open buy ids

74 prices = [] # all open buy prices

75 order_volumes = [] # all open buy wvolumes

76 volume filled = [] # volume filled of each open buy order

77

78 open_orders = resp.json()

79 for order in open_orders:

80 if order['action’] == "BUY":

81 open_buys_volume = open_buys_volume + order[quantity’]
82 volume filled.append(order[quantity filled'])

83 order_volumes.append(order["quantity’])

84 prices.append(order[’price’])

85 ids.append(order[‘order_id"])

86

87 return volume filled, open_buys wvolume, ids, prices, order volumes
88

89 # this helper method will buy and sell the maximum number of shares
90 def buy_sell(session, sell price, buy_price):
al for i in range(MAX ORDERS):

92 session.post(http://localhost:9999/vl/orders’, params = { 'ticker': "ALGO",
93 ‘type': 'LIMIT', ‘quantity’: MAX VOLUME, ‘price’: sell price, 'action': 'SELL'})
94 session.post(htto: //localhost:9999/vl/orders’. params = { 'ticker': "ALGO".

Copyright © 2019, Rotman School of Management.

15

95 ‘type': "LIMIT', ‘quantity’': MAX VOLUME, 'price’': buy price, ‘action': "BUY'})
96

97 # this helper method re-orders all open buys or sells

98 def re_order(session, number_of orders, ids, volumes filled, volumes, price, action):

99 for i in range(number_of orders):
100 id = ids[i]
101 wolume = volumes[i]
182 wvolume filled = volumes filled[i]
183 # if the order is partially filled.
184 if(volume_filled != @):
185 volume = MAX_VOLUME - wvolume_filled
106
187 # delete then re-purchase.
108 deleted = session.delete('http://localhost:9999/v1/orders/{}" .format(id))
189 if(deleted.ok):
118 session.post(http://localhost:9999/v]l/orders’, params = {'ticker': "ALGO",
111 ‘type': "LIMIT', ‘quantity’: wvolume, ‘price’: price, 'action’: action})
112
113 def main():
114 # instantiate variables about all the open buy orders
115 buy ids = [] # order ids
116 buy prices = [] # order prices
117 buy wolumes = [] # order volumes
118 volume_filled_buys = [] # amount of volume filled for each order
119 open_buys_wolume = @ # combined volume from all open buy orders
120
121 # instantiate variables about all the open sell orders

122 sell ids = []

123 sell prices = []

124 sell volumes = []

125 volume_filled_sells = []

126 open_sells_wvolume = @

127

128 # instantiated variables when just one side of the book has been completely filled

129 single side_filled = False

138 single side transaction_time = 8

131

132 # creates a session to manage connections and requests to the RIT Client

133 with requests.Session() as s:

134 s.headers.update(API_KEY)

135 tick = get tick(s)

136

137 # while the time is between 5 and 295, do the following

138 while tick > 5 and tick < 295 and not shutdown:

139 # update information about the case

148 volume_filled_sells, open_sells wolume, sell ids, sell prices, sell volumes = open_sells(s)
141 volume filled buys, open_buys volume, buy ids, buy prices, buy volumes = open_buys(s)
142 bid price, ask price = ticker bid ask(s, "ALGO')

Copyright © 2019, Rotman School of Management. 16

143
144
145
146
147
143
149
15@
151
152
153
154
155
156
157
158
159
166
161
162
163
164
165
166
167
168
169
178
171
172
173
174
175
176
177
178
179
188
181
182
183
184
185
186
187
188
189
196
191
192
193

check if you have @ cpen orders
if{open_sells_wvolume == @ and open_buys_volume == @):
both sides are filled now
single_side_filled = False

calculate the spread between the bid and ask prices
bid_ask spread = ask_price - bid_price

set the prices
sell_price = ask_price
buy_price = bid_price

the calculated spread is greater or equal to our set spread
if(bid_ask_spread »>= SPREAD):

buy and sell the maximum number of shares

buy_sell(s, sell price, buy_price)

sleep(SPEEDBUMP)
there are oustanding open orders
else:
one side of the book has no open orders
if(not single_side_filled and (open_buys wvolume == @ or open_sells volume == 8)):

single_side_filled = True
single_side_transaction_time = tick

ask side has been completely filled
if(open_sells_wolume == 8):
current buy orders are at the top of the book
if(buy_price == bid_price):
continue # next iteration of loop

its been more than 3 seconds since a single side has been completely filled
elif(tick - single_side_transacticn_time >= 3):

calulate the potential profits you can make

next_buy price = bid price + .81

potential profit = sell price - next_buy_price - .82

potential profit is greater than or equal to a cent or its been more than 6 seconds

if(potential profit »= .21 or tick - single_side_transaction_time »= 6):
action = 'BUY'
number_of_orders = len(buy_ids)
buy_price = bid_price + .21
price = buy_price
ids = buy_ids
volumes = buy_volumes
volumes_filled = wolume_filled_buys

delete buys and re-buy
re_order(s, number_of orders, ids, volumes_filled, wvolumes, price, action)
sleep(SPEEDBUMP)

Copyright © 2019, Rotman School of Management.

17

[

bid side has been completely filled

W

F
O
=~ W

1 elif{open_buys_wvolume == @):
19 # current sell orders are at the top of the book
1 if(sell_price == ask_price):

F
W
w0 oca

continue # next iteration of loop

[ex]

its been more than 3 seconds since a single side has been completely filled
elif{tick - single_side_transaction_time »>= 3):

calculate the potential profit you can make

next_sell price = ask_price - .21

potential_profit = next_sell price - buy price - .82

b IS VTN L I SR WO R S S

potential profit is greater than or equal to a cent or its been more than 6 seconds
if(potential profit »= .81 or tick - single_side_transaction_time »>= &):

action = "SELL’

number_of_orders = len(sell_ids)

sell price = ask _price - .81

price = sell price

ids = sell ids

volumes = sell wvolumes

volumes_filled = volume_filled_sells

00000060 0 0 Q

|l il el e =
[V e i

b LR) B S WU N R)

delete sells then re-sell
re_order(s, number_of_orders, ids, volumes_filled, wolumes, price, action)

| L o I o o e e
woca

1 sleep(SPEEDBUMP)

28

21 #refresh the case time. THIS IS IMPORTANT FOR THE WHILE LOOP
22 tick = get tick(s)

23

24 if __pame__ == '__main__":

25 signal.signal(signal.SIGINT, signal_handler)

26 main()

In order to run the algorithm, ensure that the RIT client is connected and the REST API is enabled.
Then, from the working directory, enter python <FILENAME>.py into the prompt. To stop the
algorithm before the case is finished, press CTRL+C. If the file name has any space in it, please enter
python “<FILENAME>.py”

Note: if students make changes to the algorithm's code while it is running in the prompt, those changes
will not be reflected in what is running. Students will have to stop and restart the algorithm.

	Introduction
	Basic Setup
	Algorithm Logic
	Overview
	Helper Methods
	Implementation

	Re-Submitting Orders
	Overview
	Helper Methods
	Implementation

	Running the Algorithm

